... airborne concentrations ... which it is believed that *nearly* all workers may be repeatedly exposed ... without adverse health effects.
Health impairments considered include those that:

- shorten life expectancy,
- adversely affect reproductive function or developmental process,
- compromise organ or tissue function, or
- impair the capability for resisting toxic substances or disease processes.
HHPA Sensitization

- Hexahydrophthalic Anhydride
 - TLV®-Ceiling of 5 ug/m³ (I,V)
 - Avoid IgE and IgG mediated disease
- >50 ug/m³ yields antibody increase vs. control population
- 10 ug/m³ with peaks >50 ug/m³, increase
- 10 ug/m³ w/o peaks, no increase
- Minimizing antibody increase reduces respiratory symptoms
Ethylene metabolism yields EtO
- Hydroxyethyl hemoglobin adducts in ethylene exposed animals and humans
- DNA adducts measured in rats exposed to 300 ppm ethylene

- Saturation in rodents at 1000 ppm

- Ethylene is more than a simple asphyxiant
Ethylene metabolism

- PBPK models predict conversion rate of ethylene to EtO
 - 1000 ppm ethylene equivalent to 2-5 ppm EtO in rodents
 - 45 ppm equivalent to 1 ppm in humans
- Chronic study in rats at 3000 ppm yielded no chronic toxicologic or carcinogenic effects
- Toxic effects in humans not reported below level of asphyxiation
2004 Notice of Intended Changes for Ethylene TLV®

- TLV®-TWA of 200 ppm based on chronic study with NOAEL of 3000 ppm
- A4, Not Classifiable as a Human Carcinogen, based on negative rat bioassay
- Skin, sensitization and reproductive effects all negative
- Critical Effect: asphyxiation
Neurotoxicity Endpoints

- Toluene TLV® of 50 ppm based on reports of headache and irritation as low as 50 ppm
- Conflicting reports of altered CNS performance
- Toluene-ethanol interactions well recognized
- New literature regarding vision effects
Are vision effects real and/or relevant?

- Boyes’ Presentation on Neurotoxicity Endpoints, presented to the ACGIH® TLV®-CS Committee, Jan 2004 Meeting

 William K. Boyes
 Neurotoxicology Division
 National Health and Environmental Effects Research Laboratory
 Office of Research and Development
 U.S. Environmental Protection Agency
Boyes’ Outline

- Overview of neurotoxicity
 - Outcomes
 - Measurements
 - Risk assessment
- “Non-traditional” measures of neurotoxicity
 - Vision
 - Contrast sensitivity
 - Color
 - Hearing
 - Chemical interactions with noise-induced hearing loss
Neurotoxicity Definitions
(EPA Neurotoxicity Risk Assessment Guidelines)

- **Neurotoxicity:**
 - An adverse effect on the structure or function of the central and/or peripheral nervous system relating to exposure to a chemical substance

- **Adverse Effects:**
 - Alteration from baseline which alters the ability to survive, reproduce or adapt
 - Side effects or unwanted effects
Neurotoxicity Outcomes

reported for >25 chemicals out of 750

(Anger and Johnson, 1985)

<table>
<thead>
<tr>
<th>Motor</th>
<th>Sensory</th>
<th>Cognitive</th>
<th>General</th>
<th>Affect/Personality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity changes</td>
<td>Auditory</td>
<td>Confusion</td>
<td>Anorexia</td>
<td>Apathy</td>
</tr>
<tr>
<td>Ataxia</td>
<td>Equilibrium</td>
<td>Memory</td>
<td>Autonomic</td>
<td>Delirium</td>
</tr>
<tr>
<td>Convulsions</td>
<td>Olfactory</td>
<td>Speech</td>
<td>ChE inhibition</td>
<td>Depression</td>
</tr>
<tr>
<td>Incoordination</td>
<td>Pain disorders</td>
<td>CNS Depression</td>
<td>Excitability</td>
<td></td>
</tr>
<tr>
<td>Paralysis</td>
<td>Pain, feelings of</td>
<td>Fatigue</td>
<td>Hallucinations</td>
<td></td>
</tr>
<tr>
<td>Pupil size</td>
<td>Tactile</td>
<td>Narcosis</td>
<td>Irritability</td>
<td></td>
</tr>
<tr>
<td>Reflex abnormal</td>
<td>Vision</td>
<td>Neuropathy</td>
<td>Nervousness</td>
<td></td>
</tr>
<tr>
<td>Tremor</td>
<td></td>
<td></td>
<td>Restlessness</td>
<td></td>
</tr>
<tr>
<td>Weakness</td>
<td></td>
<td></td>
<td>Sleep disturbed</td>
<td></td>
</tr>
</tbody>
</table>

Affect/Personality
- Apathy
- Delirium
- Depression
- Excitability
- Hallucinations
- Irritability
- Nervousness
- Restlessness
- Sleep disturbed
The Retina is Susceptible to Toxicity

- Retina
 - high metabolic rate
 - high choroidal blood flow
 - daily turnover of rod and cone outer segments
 - melanin
 - light-toxicant interactions

- Contrast sensitivity
- Color discrimination

http://webvision.med.utah.edu/index.html
Contrast Sensitivity

Visual Contrast
- The luminance difference between light and dark parts of a visual pattern

Contrast Sensitivity
- Expressed as the inverse of the perceptual contrast threshold
- Reflects the ability to distinguish visual features on different spatial scales

Photo by Geller
Acquired Color Vision Deficits

- Mixed organic solvents
- Styrene
- Toluene
- Perchloroethylene
- Methanol
- Ethanol

- Carbon disulfide
- n-Hexane
- Mercury
- Diethyl ether

Clinical Retinopathies
- Diabetic
- Age-related macular degeneration
- etc...
Color Confusion Index (CCI)

CCI = sum of the distances in color space between the chips as arranged / minimal distance

= 1.0 for a perfect score
Are Visual Effects Reversible?

- **Weekend**: toluene
 - color vision impaired Wed and Mon Morning
- **1 mo holiday**: styrene
 - color deficits persist
- **2 yr follow-up**: drycleaners
 - ↑ exposure → ↑ CCI,
 - ↓ exposure → CCI unchanged
- **2 yr ↓ exposure**: mixed
 - better color discrimination
 - no change in contrast sensitivity
- **2 yr post-exposure**: mixed
 - color vision not impaired
 - contrast sensitivity deficits were observed
Boyes’ Summary: Visual Effects

- Organic solvents
 - cause deficits in visual contrast sensitivity contrast
 - cause deficits in color perception
- The effects
 - may be subtle in magnitude
 - but increase with continued exposure
- The locus of these effects
 - is unknown
 - may involve photoreceptors or other retinal neurons
- Recovery
 - is uncertain
- Dose levels
 - are among the lowest reported to cause adverse effects
Hydrocarbon Mixtures

• Chemist’s point of view:
 • aliphatic, cycloaliphatic & aromatic alkanes, alkenes & alkynes, ketones, aldehydes, alcohols, ethers, etc.

• Solvent User’s point of view:
 • Fuels, synthesis feedstocks, cleaning solvents, coating & adhesive vehicles, etc.
TLV® Values

- Pure substances: several hundred
- Substance Mixtures: ten
 - Asphalt, Coal tar pitch volatiles, Diesel fuel, gasoline, kerosene/jet fuels, LPG, Rubber solvent (naphtha), Stoddard solvent, Turpentine, VM&P Naphtha
Hc Mixture Emphasis

- Recent Adoptions
 - Kerosene/Jet Fuels, as total hydrocarbon vapor
 - Turpentine and selected monoterpenes
 - Aliphatic hydrocarbon gases Alkane (C$_1$-C$_4$)
 - Diesel Fuel
Substance Group Approach to Hydrocarbon Mixtures

• C_1-C_4 Aliphatic Alkane gases was successful
• RCP -- European and American chemical industry “Hydrocarbon Panels” have jointly developed a method to develop OELs for hydrocarbon solvents.
• Two necessary parts:
 • Calculation procedure
 • “Guidance Values” for hydrocarbon groups
Calculation Procedure for Mixtures

Objective:
To develop a generic method for setting exposure limits for hydrocarbon solvents.

Generic:
• Include all hydrocarbon solvents
• Maximum advantage of existing data
• Minimize effects of minor differences
• Similar solvents have similar TLVs®
Hc Mixture Challenges

- Huge amount of information available
- Large body of un-published data
- User perspective
 - Manufacturer recommended OEV
 - IH comparison with measured results
- Liquid vs. Vapor % issues
- Overlap of “blends”