TLV® / BEI® Introduction

It is important to read the following information on the uses of TLVs® and BEIs® before downloading
TLV® or BEI® Documentation. When finished, click your browser's 'BACK' button to return to the ACGIH® store.

Policy Statement on the Uses of TLVs® and BEIs®

The Threshold Limit Values (TLVs®) and Biological Exposure Indices (BEIs®) are developed as guidelines to assist in the control of health hazards. These recommendations or guidelines are intended for use in the practice of industrial hygiene, to be interpreted and applied only by a person trained in this discipline. They are not developed for use as legal standards and ACGIH® does not advocate their use as such. However, it is recognized that in certain circumstances individuals or organizations may wish to make use of these recommendations or guidelines as a supplement to their occupational safety and health program. ACGIH® will not oppose their use in this manner, if the use of TLVs® and BEIs® in these instances will contribute to the overall improvement in worker protection. However, the user must recognize the constraints and limitations subject to their proper use and bear the responsibility for such use.

The Introductions to the TLV®/BEI® Book and the TLV®/BEI® Documentation provide the philosophical and practical bases for the uses and limitations of the TLVs® and BEIs®. To extend those uses of the TLVs® and BEIs® to include other applications, such as use without the judgment of an industrial hygienist, application to a different population, development of new exposure/recovery time models, or new effect endpoints, stretches the reliability and even viability of the database for the TLV® or BEI® as evidenced by the individual Documentation.

It is not appropriate for individuals or organizations to impose on the TLVs® or the BEIs® their concepts of what the TLVs® or BEIs® should be or how they should be applied or to transfer regulatory standards requirements to the TLVs® or BEIs®.

Approved by the ACGIH® Board of Directors on March 1, 1988.

Special Note to User

These values are intended for use in the practice of industrial hygiene as guidelines or recommendations to assist in the control of potential workplace health hazards and for no other use. These values are not fine lines between safe and dangerous concentrations and should not be used by anyone untrained in the discipline of industrial hygiene. It is imperative that the user of these values read the Introduction to each section of the TLV®/BEI® Book and be familiar with the Documentation of the TLVs® and BEIs® before applying the recommendations. ACGIH® disclaims liability with respect to the use of the TLVs® and BEIs®.

Statement of Position Regarding the TLVs® and BEIs®

The American Conference of Governmental Industrial Hygienists (ACGIH®) is a private not-for-profit, nongovernmental corporation whose members are industrial hygienists or other occupational health and safety professionals dedicated to promoting health and safety within the workplace. ACGIH® is a scientific association. ACGIH® is not a standards setting body. As a scientific organization, it has established committees that review the existing published, peer-reviewed scientific literature. ACGIH® publishes guidelines known as Threshold Limit Values (TLVs®) and Biological Exposure Indices (BEIs®) for use by industrial hygienists in making decisions regarding safe levels of exposure to various chemical and physical agents found in the workplace. In using these guidelines, industrial hygienists are cautioned that the TLVs® and BEIs® are only one of multiple factors to be considered in evaluating specific workplace situations and conditions.

Each year ACGIH® publishes its TLVs® and BEIs® in a book. In the introduction to the book, ACGIH® states that the TLVs® and BEIs® are guidelines to be used by professionals trained in the practice of industrial hygiene. The TLVs® and BEIs® are not designed to be used as standards. Nevertheless, ACGIH® is aware that in certain instances the TLVs® and the BEIs® are used as standards by national, state, or local governments.

Governmental bodies establish public health standards based on statutory and legal frameworks that include definitions and criteria concerning the approach to be used in assessing and managing risk. In most instances, governmental bodies that set workplace health and safety standards are required to evaluate health effects, economic and technical feasibility, and the availability of acceptable methods to determine compliance.

ACGIH® TLVs® and BEIs® are not consensus standards. Voluntary consensus standards are developed or adopted by voluntary consensus standards bodies. The consensus standards process involves canvassing the opinions, views and positions of all interested parties and then developing a consensus position that is acceptable to these parties. While the process used to develop a TLV® or BEI® includes public notice and requests for all available and relevant scientific data, the TLV® or BEI® does not represent a consensus position that addresses all issues raised by all interested parties (e.g., issues of technical or economic feasibility). The TLVs® and BEIs® represent a scientific opinion based on a review of existing peer-reviewed scientific literature by committees of experts in public health and related sciences.

ACGIH® TLVs® and BEIs® are health-based values. ACGIH® TLVs® and BEIs® are established by committees that review existing published and peer-reviewed literature in various scientific disciplines (e.g., industrial hygiene, toxicology, occupational medicine, and epidemiology). Based on the available information, ACGIH® formulates a conclusion on the level of exposure that the typical worker can experience without adverse health effects. The TLVs® and BEIs® represent conditions under which ACGIH® believes that nearly all workers may be repeatedly exposed without adverse health effects. They are not fine lines between safe and dangerous exposures, nor are they a relative index of toxicology. The TLVs® and BEIs® are not quantitative estimates of risk at different exposure levels or by different routes of exposure.

Since ACGIH® TLVs® and BEIs® are based solely on health factors, there is no consideration given to economic or technical feasibility. Regulatory agencies should not assume that it is economically or technically feasible for an industry or employer to meet TLVs® or BEIs®. Similarly, although there are usually valid methods to measure workplace exposures at TLVs® and BEIs®, there can be instances where such reliable test methods have not yet been validated. Obviously, such a situation can create major enforcement difficulties if a TLV® or BEI® was adopted as a standard.

ACGIH® does not believe that TLVs® and BEIs® should be adopted as standards without full compliance with applicable regulatory procedures including an analysis of other factors necessary to make appropriate risk management decisions. However, ACGIH® does believe that regulatory bodies should consider TLVs® or BEIs® as valuable input into the risk characterization process (hazard identification, dose-response relationships, and exposure assessment). Regulatory bodies should view TLVs® and BEIs® as an expression of scientific opinion.

ACGIH® is proud of the scientists and the many members who volunteer their time to work on the TLV® and BEI® Committees. These experts develop written Documentation that include an expression of scientific opinion and a description of the basis, rationale, and limitations of the conclusions reached by ACGIH®. The Documentation provides a comprehensive list and analysis of all the major published peer-reviewed studies that ACGIH® relied upon in formulating its scientific opinion. Regulatory agencies dealing with hazards addressed by a TLV® or BEI® should obtain a copy of the full written Documentation for the TLV® or BEI®. Any use of a TLV® or BEI® in a regulatory context should include a careful evaluation of the information in the written Documentation and consideration of all other factors as required by the statutes which govern the regulatory process of the governmental body involved.

  • ACGIH® is a not-for-profit scientific association.
  • ACGIH® proposes guidelines known as TLVs® and BEIs® for use by industrial hygienists in making decisions regarding safe levels of exposure to various hazards found in the workplace.
  • ACGIH® is not a standards setting body.
  • Regulatory bodies should view TLVs® and BEIs® as an expression of scientific opinion.
  • TLVs® and BEIs® are not consensus standards.
  • ACGIH® TLVs® and BEIs® are based solely on health factors; there is no consideration given to economic or technical feasibility. Regulatory agencies should not assume that it is economically or technically feasible to meet established TLVs® or BEIs®.
  • ACGIH® believes that TLVs® and BEIs® should NOT be adopted as standards without an analysis of other factors necessary to make appropriate risk management decisions.
  • TLVs® and BEIs® can provide valuable input into the risk characterization process. Regulatory agencies dealing with hazards addressed by a TLV® or BEI® should review the full written Documentation for the numerical TLV® or BEI®.

ACGIH® is publishing this Statement in order to assist ACGIH® members, government regulators, and industry groups in understanding the basis and limitations of the TLVs® and BEIs® when used in a regulatory context. This Statement was adopted by the ACGIH® Board of Directors on March 1, 2002.

TLV®/BEI® Development Process: An Overview

Provided below is an overview of the ACGIH® TLV®/BEI® Development Process. Additional information is available on the ACGIH® website ( Please also refer to the Process Flowchart (Figure 1).

  1. Under Study: When a substance or agent is selected for the development or revision of a TLV® or BEI®, the appropriate committee places it on its Under Study list. Each committee determines its own selection of chemical substances or physical agents for its Under Study list. A variety of factors is used in this selection process, including prevalence, use, number of workers exposed, availability of scientific data, existence/absence of a TLV® or BEI®, age of TLV® or BEI®, input from the public, etc. The public may offer input to any TLV® or BEI® Committee by e-mail to

    The Under Study lists serve as notification and invitation to interested parties to submit substantive data and comments to assist the committees in their deliberations. Each committee considers only those comments and data that address issues of health and exposure, but not economic or technical feasibility. Comments must be accompanied by copies of substantiating data, preferably in the form of peer-reviewed literature. Should the data be from unpublished studies, ACGIH® requires written authorization from the owner of the studies granting ACGIH® permission to (1) use, (2) cite within the Documentation, and (3) upon request from a third party, release the information. All three permissions must be stated/covered in the written authorization. (See endnote for a sample permission statement.) Electronic submission of all information to the ACGIH® Science Group at is preferred and greatly increases the ease and efficiency with which the committee can consider the comments or data.

    The Under Study list is published each year by February 1 on the ACGIH® website (, in the Annual Reports of the Committees on TLVs® and BEIs®, and later in the annual TLVs® and BEIs® book. In addition, the Under Study list is updated by July 31 into a two-tier list.  

    • Tier 1 entries indicates which chemical substances and physical agents may move forward as an NIC or NIE in the upcoming year, based on their status in the development process.

    • Tier 2 consists of those chemical substances and physical agents that will not move forward, but will either remain on, or be removed from, the Under Study list for the next year.


    This updated list will remain in two-tiers for the balance of the year. All updates to the Under Study lists and publication of the two-tier lists are posted on the ACGIH® website (  

  2. Draft Documentation: One or more members of the appropriate committee are assigned the task of collecting information and data from the scientific literature, reviewing results of unpublished studies submitted for review, and developing a draft TLV® or BEI® Documentation. The draft Documentation is a critical evaluation of the scientific literature relevant to recommending a TLV® or BEI®; however, it is not an exhaustive critical review of all studies but only those pertinent to identifying the critical effect and setting the TLV®. Particular emphasis is given to papers that address minimal or no adverse health effect levels in exposed animals or workers that deal with the reversibility of such effects, or in the case of a BEI®, that assess chemical uptake and provide applicable determinant(s) as an index of uptake. Human data, when available, are given special emphasis. This draft Documentation, with its proposed TLV® or BEI®, is then reviewed and critiqued by additional committee members, and eventually by the full committee. This often results in several revisions to the draft Documentation before the full committee accepts the proposed draft TLV® or BEI® and draft Documentation. The draft Documentation is not available to the public during this stage of the development process and is not released until it is at the Notice of Intended Changes (NIC) stage. Authorship of the Documentation is not disclosed.

  3. Notice of Intended Changes (NIC):
    [Notice of Intent to Establish (NIE): The Physical Agents section of the TLVs® and BEIs® book also uses the term Notice of Intent to Establish (NIE) in addition to NIC. An NIE follows the same development process as an NIC. For purposes of this process overview, only the term NIC is used.]

    When the full committee accepts the draft Documentation and its proposed TLV® or BEI®, the Documentation and proposed values are then recommended to the ACGIH® Board of Directors for ratification as an NIC. If ratified, each proposed TLV® or BEI® is published as an NIC in the Annual Reports of the Committees on TLVs® and BEIs®, which is published in the ACGIH® member newsletter, Today! Online and is also available online for purchase at At the same time, the draft Documentation is made available through ACGIH® Customer Service or online at All information contained in the Annual Reports of the Committees on TLVs® and BEIs® is integrated into the annual TLVs® and BEIs® book, which is usually available to the general public in February or March of each year. Following the NIC ratification by the ACGIH® Board of Directors, interested parties, including ACGIH® members, are invited to provide data and substantive comments, preferably in the form of peer-reviewed literature, on the proposed TLVs® or BEIs® contained in the NIC. Should the data be from unpublished studies, ACGIH® requires written authorization from the owner of the studies granting ACGIH® permission to (1) use, (2) cite within the Documentation, and (3) upon request from a third party,release the information. All three permissions must be stated/covered in the written authorization. (See endnote for a sample permission statement.) The most effective and helpful comments are those that address specific points within the draft Documentation. Changes or updates are made to the draft Documentation as necessary. If the committee finds or receives substantive data that change its scientific opinion regarding TLV® or BEI® values or notations, the committee may revise the proposal(s) and recommend to the ACGIH® Board of Directors that it be retained on the NIC.

    Important Notice: The comment period for an NIC or NIE draft Documentation and its respective TLV(s)®, notation(s), or BEI(s)®, will be limited to a firm 4-month period, running from February 1 to May 31 of each year. ACGIH® has structured the comment period to ensure all comments are received by ACGIH® in time for full consideration by the appropriate committee before its fall meeting. Because of the time required to properly review, evaluate, and consider comments during the fall meetings, any comments received after the deadline of May 31 will not be considered in that year's committee deliberations regarding the outcome for possible adoption of an NIC or NIE. As general practice, ACGIH® reviews all submissions regarding chemical substances and physical agents on the Under Study list, as well as NICs or NIEs, or currently adopted BEI(s)® or TLV(s)®. All comments received after May 31 will be fully considered in the following year. DraftDocumentation will be available for review during the comment period.

    When submitting comments, ACGIH® requires that the submission be limited to 10 pages in length, including an executive summary. The submission may include appendices of citable material not included as part of the 10-page limit. It would be very beneficial to structure comments as follows:

      The above procedure will help ACGIH® to more efficiently and productively review comments.

    1. TLV®/BEI® and Adopted Documentation: If the committee neither finds nor receives any substantive data that change its scientific opinion regarding an NIC TLV® or BEI® (or notation), the committee may then approve its recommendation to the ACGIH® Board of Directors for adoption. Once approved by the committee and subsequently ratified by the Board, the TLV® or BEI® is published as adopted in the Annual Reports of the Committees on TLVs® and BEIs® and in the annual TLVs® and BEIs® book, and the draft TLV® or BEI® Documentation is finalized for formal publication.

    2. Withdraw from Consideration: At any point in the process, the committee may determine not to proceed with the development of a TLV® or BEI® and withdraw it from further consideration. Substances or physical agents that have been withdrawn from consideration may be reconsidered by placement on the Under Study list (step 1 above).

       There are several important points to consider throughout the above process:

      1. The appropriate method for an interested party to contribute to the TLV® and BEI® process is through the submission of literature that is peer-reviewed and public. ACGIH® strongly encourages interested parties to publish their studies, and not to rely on unpublished studies as their input to the TLV® and BEI® process. Also, the best time to submit comments to ACGIH®is in the early stages of the TLV® and BEI® Development Process, preferably while the substance or agent is on the Under Study list.


      2. An additional venue for presentation of new data is an ACGIH®-sponsored symposium or workshop that provides a platform for public discussion and scientific interpretation. ACGIH®encourages input from external parties for suggestions on symposium topics, including suggestions about sponsors, speakers and format. ACGIH® employs several criteria to determine the appropriateness of a symposium. A key criterion is that the symposium must be the most efficient format to present the committee with information that will assist in the scientific judgment used for writing the Documentation and in setting the respective TLVs® or BEIs®. A symposium topic should be suggested while the substance/agent is under study, as symposia require considerable time, commitment, and resources to develop. Symposium topic suggestions submitted while a substance is on the NIC will be considered, but this is usually too late in the decision-making process. A symposium topic will not be favorably considered if its purpose is to provide a forum merely for voicing opinions about existing data. Rather, there must be on-going research, scientific uncertainty about currently available data, or another scientific reason for the symposium. Symposium topic suggestions should be sent to the ACGIH® Science Group (


      3. ACGIH® periodically receives requests from external parties to make a presentation to a committee about specific substances or issues. It is strictly by exception that such requests are granted. While there are various reasons for this position, the underlying fact is that the committee focuses on data that have been peer-reviewed and published and not on data presented in a private forum. A committee may grant a request when the data is significantly new, has received peer review, is the best vehicle for receipt of the information, and is essential to the committee's deliberations. The presentation is not a forum to merely voice opinions about existing data. In order for a committee to evaluate such a request, the external party must submit a request in writing that, at a minimum, addresses the following elements: (a) a detailed description of the presentation; (b) a clear demonstration of why the information is important to the committee's deliberations; and (c) a clear demonstration of why a meeting is the necessary method of delivery. This request must be sent to the ACGIH® Science Group (

        Also, the committee may initiate contact with outside experts (a) to meet with the committee to discuss specific issues or to obtain additional knowledge on the subject, and (b) to provide written input or review of a Documentation. This is only done on an as needed basis, and not as a routine practice.

      4. ACGIH® does not commit to deferring consideration of a new or revised TLV® or BEI® pending the outcome of proposed or ongoing research.


      Important dates to consider throughout each calendar year of the TLV®/BEI® Development Process:

      First Quarter:

      Year Round

      • Public comments are accepted. See Note below.


      • Committees meet.
      Note: It is recommended that comments be submitted as early as practical, and preferably no later than May 31st to allow sufficient time for their proper consideration/review. This is particularly important for an NIC TLV®/BEI®.


      Important Notice: The comment period for an NIC or NIE draft Documentation and its respective TLV(s)®, notation(s), or BEI(s)®, will be limited to a firm 4-month period, running from February 1 to May 31 of each year. (See Important Notice, step 3 above.)

      Third Quarter:

      Fourth Quarter
      : *

      • TLV®/BEI® Committees vote on proposed TLVs®/BEIs® for NIC or final adoption.


      • ACGIH® Board of Directors votes on ratification of TLV®/BEI® Committee recommendations.
      * These actions typically occur early in the fourth quarter, but may occur during other periods of the quarter or year.

      Endnote: Sample permission statement granting ACGIH® authorization to use, cite, and release unpublished studies:


      [Name], [author or sponsor of the study**] grants permission to ACGIH® to use and cite the documents listed below, and to fully disclose them to parties outside of ACGIH® upon request. Permission to disclose the documents includes permission to make copies as needed.

      Example: Joseph D. Doe, PhD, co-author of the study, grants permission to ACGIH®to use and cite the document listed below, and to fully disclose this document to parties outside of ACGIH®. Permission to disclose the document includes permission to make copies as needed.

      "Effects of Quartz Status on Pharmacokinetics of Intratracheally Instilled Cristobalite in Rats. March 21, 2003."
      **This statement must be signed by an individual authorized to give this permission, and should include contact information such as title and address.

      Last Revised April 2012


    Introduction to the Biological Exposure Indices (BEIs®)

    Biological monitoring provides one means to assess exposure and health risk to workers. It entails measurement of the concentration of a chemical determinant in the biological media of those exposed and is an indicator of the uptake of a substance. Biological Exposure Indices (BEIs®) are guidance values for assessing biological monitoring results. BEIs® represent the levels of determinants that are most likely to be observed in specimens collected from healthy workers who have been exposed to chemicals to the same extent as workers with inhalation exposure at the Threshold Limit Value (TLV®). The exceptions are the BEIs® for chemicals for which the TLVs® are based on protection against nonsystemic effects (e.g., irritation or respiratory impairment) where biological monitoring is desirable because of the potential for significant absorption via an additional route of entry (usually the skin). Biological monitoring indirectly reflects the dose to a worker from exposure to the chemical of interest. The BEI® generally indicates a concentration below which nearly all workers should not experience adverse health effects. The BEI® determinant can be the chemical itself; one or more metabolites; or a characteristic, reversible biochemical change induced by the chemical. In most cases, the specimen used for biological monitoring is urine, blood, or exhaled air. The BEIs® are not intended for use as a measure of adverse effects or for diagnosis of occupational illness.

    Biological monitoring can assist the occupational health professional detect and determine absorption via the skin or gastrointestinal system, in addition to that by inhalation; assess body burden; reconstruct past exposure in the absence of other exposure measurements; detect nonoccupational exposure among workers; test the efficacy of personal protective equipment and engineering controls; and monitor work practices. 

    Biological monitoring serves as a complement to exposure assessment by air sampling. The existence of a BEI® does not indicate a need to conduct biological monitoring. Conducting, designing, and interpreting biological monitoring protocols and the application of the BEI® requires professional experience in occupational health and reference to the current edition of the Documentation of the Threshold Limit Values and Biological Exposure Indices (ACGIH®).

    Editor’s note: The approximate year that the current Documentation was last substantially reviewed and, where necessary, updated may be found following the CAS number for each of the adopted entries in the alphabetical listing, e.g., Acetone [67-64-1] (2014). The reader is advised to refer to the “BEI® Chronology” section in each Documentation for a brief history of the BEI® recommendations and notations.


    BEIs® are developed by Committee consensus through an analysis and evaluation process. The detailed scientific criteria and justification for each BEI® can be found in the Documentation of the Threshold Limit Values and Biological Exposure Indices. The principal material evaluated by the BEI® Committee includes peer-reviewed published data taken from the workplace (i.e., field studies), data from controlled exposure studies, and from appropriate pharmacokinetic modeling when available. The results of animal research are also considered when relevant. The Documentation provides essential background information and the scientific reasoning used in establishing each BEI®. Other information given includes the analytical methods, possible potential for confounding exposures, specimen collection recommendations, limitations, and other pertinent information.

    In recommending a BEI®, ACGIH® considers whether published data are of reasonable quality and quantity, and may also consider unpublished data if verified. There are numerous instances when analytical techniques are available for the measurement of a biological determinant, but published information is unavailable or unsuitable for determining a BEI®. In those instances, occupational health professionals are encouraged to accumulate and report biological monitoring data together with exposure and health data.

    Relationship of BEIs® to TLVs®

    BEI® determinants are an index of an individual’s “uptake” of a chemical(s). Air monitoring to determine the TLV® indicates the potential inhalation “exposure” of an individual or group. The uptake within a workgroup may be different for each individual for a variety of reasons, some of which are indicated below. Most BEIs® are based on a direct correlation with the TLV® (i.e., the concentration of the determinant that can be expected when the airborne concentration is at the TLV®). Some of the BEIs® (e.g., lead) are not derived from the TLV®, but directly relate to the development of an adverse health effect. The basis of each BEI® is provided in the Documentation.

    Inconsistencies may be observed between the information obtained from air monitoring and biological monitoring for a variety of reasons, including, but not limited to, work-related and methodological factors. Examples are listed below: 

    • Physiological makeup and health status of the worker, such as body build, diet (water and fat intake), metabolism, body fluid composition, age, gender, pregnancy, medication, and disease state.
    • Occupational exposure factors, such as the work-rate intensity and duration, skin exposure, temperature and humidity, co-exposure to other chemicals, and other work habits.
    • Nonoccupational exposure factors, such as community and home air pollutants, water and food components, personal hygiene, smoking, alcohol and drug intake, exposure to household products, or exposure to chemicals from hobbies or from another workplace.
    • Methodological factors, which include specimen contamination or deterioration during collection and storage and bias of the selected analytical method.
    • Location of the air monitoring device in relation to the worker’s breathing zone.
    • Particle size distribution and bioavailability.
    • Variable effectiveness of personal protective devices.


    Specimen Collection

    Because the concentration of some determinants can change rapidly, the specimen collection time (sampling time) is very important and must be observed and recorded carefully. The sampling time is specified in the BEI® and is determined by the duration of retention of the determinant. Substances and determinants that accumulate may not require a specific sampling time. An explanation of the BEI® sampling time is as follows:

    Sampling Time
    1. Prior to shift
    2. During shift
    3. End of shift
    4. End of the workweek
    5. Discretionary

    Recommended Collection
    16 hours after exposure ceases
    Anytime after two hours of exposure
    As soon as possible after exposure ceases
    After four or five consecutive working days with exposure
    At any time


    Urine Specimen Acceptability

    Urine specimens that are highly dilute or highly concentrated are generally not suitable for monitoring. The World Health Organization has adopted guidelines for acceptable limits on urine specimens as ­follows:

    Creatinine concentration: > 0.3 g/L and < 3.0 g/L
    Specific gravity: > 1.010 and < 1.030

    Specimens falling outside either of these ranges should be discarded and another specimen should be collected. Workers who provide consistently unacceptable urine specimens should be referred for medical evaluation.

    Some BEIs® for determinants whose concentration is dependent on urine output are expressed relative to creatinine concentration. For other determinants such as those excreted by diffusion, correction for urine output is not appropriate. In general, the best correction method is chemical-specific, but research data sufficient to identify the best method may not be available. When the field data are only available as adjusted for creatinine, the BEI® will continue to be expressed relative to creatinine; in other circumstances, no correction is recommended, and the BEI® will be expressed as concentration in urine.

    Quality Assurance

    Each aspect of biological monitoring should be conducted within an effective quality assurance (QA) program. The appropriate specimen must be collected, at the proper time, without contamination or loss, and with use of a suitable container. Donor identification, time of exposure, source of exposure, and the sampling time must be recorded. The analytical method used by the laboratory must have the accuracy, sensitivity, and specificity needed to produce results consistent with the BEI®. Appropriate quality control specimens should be included in the analysis, and the laboratory must follow routine quality control rules. The laboratory should participate in an external proficiency program.

    The occupational health professional should provide known blind challenges to the laboratory along with worker specimens (e.g., blanks, purchased or spiked specimens containing the determinant, or split specimens). These blind challenges will enable the occupational health professional to assess the ability of the laboratory to process, analyze, and report results properly, and to have confidence in the laboratory’s ability to accurately measure the worker’s BEI®. When blind challenges are used, the spiked determinant should be in the same chemical form and matrix as that being analyzed by the laboratory.


    "B" = background

    The determinant may be present in biological specimens collected from subjects who have not been occupationally exposed, at a concentration which could affect interpretation of the result. Such background concentrations are incorporated in the BEI® value.

    "Nq" = nonquantitative

    Biological monitoring should be considered for this compound based on the review; however, a specific BEI® could not be determined due to insufficient data.

    "Ns" = nonspecific

    The determinant is nonspecific, since it is also observed after exposure to other chemicals.

    "Sq" = semi-quantitative

    The biological determinant is an indicator of exposure to the chemical, but the quantitative interpretation of the measurement is ambiguous. These determinants should be used as a screening test if a quantitative test is not practical, or as a confirmatory test if the quantitative test is not specific and the origin of the determinant is in question.


    It is essential to consult the specific BEI® Documentation before designing biological monitoring protocols and interpreting BEIs®. In addition, each BEI® Documentation now provides a chronology that traces all BEI® recommended actions for the chemical substance in question.

    Application of BEIs®

    BEIs® are intended as guidelines to be used in the evaluation of potential health hazards in the practice of occupational hygiene. BEIs® do not indicate a sharp distinction between hazardous and nonhazardous exposures. For example, it is possible for an individual’s determinant concentration to exceed the BEI® without incurring an increased health risk. If measurements in specimens obtained from a worker on different occasions persistently exceed the BEI®, the cause of the excessive value should be investigated and action taken to reduce the exposure. An investigation is also warranted if the majority of the measurements in specimens obtained from a group of workers at the same workplace and workshift exceed the BEI®. It is desirable that relevant information on related operations in the workplace be recorded.

    Due to the variable nature of concentrations in biological specimens, dependence should not be placed on the results of one single specimen. Administrative action should not be normally based on a single isolated measurement, but on measurements of multiple sampling, or an analysis of a repeat specimen. It may be appropriate to remove the worker from exposure following a single high result if there is reason to believe that significant exposure may have occurred. Conversely, observations below the BEI® do not necessarily indicate a lack of health risk.

    BEIs® apply to 8-hour exposures, 5 days per week. Although modified work schedules are sometimes used in various occupations, the BEI® Committee does not recommend that any adjustment or correction factor be applied to the BEIs® (i.e., the BEIs® should be used as listed, regardless of the work schedule). 

    Use of the BEI® should be applied by a knowledgeable occupational health professional. Toxicokinetic and toxicodynamic information is taken into account when establishing the BEI®; thus, some knowledge of the metabolism, distribution, accumulation, excretion, and effect(s) is helpful in using the BEI® effectively. The BEI® is a guideline for the control of potential health hazards to the worker and should not be used for other purposes. The values are inappropriate to use for the general population or for nonoccupational exposures. The BEI® values are neither rigid lines between safe and dangerous concentrations nor are they an index of toxicity.


    Introduction to the Chemical Substances TLVs®

    General Information

    The TLVs® are guidelines to be used by professional industrial hygienists. The values presented in this book are intended for use only as guidelines or recommendations to assist in the evaluation and control of potential workplace health hazards and for no other use (e.g., neither for evaluating or controlling community air pollution; nor for estimating the toxic potential of continuous, uninterrupted exposures or other extended work periods; nor for proving or disproving an existing disease or physical condition in an individual). Further, these values are not fine lines between safe and dangerous conditions and should not be used by anyone who is not trained in the discipline of industrial hygiene. TLVs® are not regulatory or consensus standards.

    Editor’s note: The approximate year that the current Documentation was last substantially reviewed and, where necessary, updated may be found following the CAS number for each of the adopted entries in the alphabetical listing, e.g., Aldrin [309-00-2] (2006). The reader is advised to refer to the “TLV® Chronology” section in each Documentation for a brief history of the TLV® recommendations and notations.

    Definition of the TLVs®

    Threshold Limit Values (TLVs®) refer to airborne concentrations of chemical substances and represent conditions under which it is believed that nearly all workers may be repeatedly exposed, day after day, over a working lifetime, without adverse health effects.

    Those who use the TLVs® MUST consult the latest Documentation to ensure that they understand the basis for the TLV® and the information used in its development. The amount and quality of the information that is available for each chemical substance varies over time.  

    Chemical substances with equivalent TLVs® (i.e., same numerical values) cannot be assumed to have similar toxicologic effects or similar biologic potency. In this book, there are columns listing the TLVs® for each chemical substance (that is, airborne concentrations in parts per million [ppm] or milligrams per cubic meter [mg/m3]) and critical effects produced by the chemical substance. These critical effects form the basis of the TLV®.

    ACGIH® recognizes that there will be considerable variation in the level of biological response to a particular chemical substance, regardless of the airborne concentration. Indeed, TLVs® do not represent a fine line between a healthy versus an unhealthy work environment or the point at which material impairment of health will occur. TLVs® will not adequately protect all workers. Some individuals may experience discomfort or even more serious adverse health effects when exposed to a chemical substance at the TLV® or even at concentrations below the TLV®. There are numerous possible reasons for increased susceptibility to a chemical substance, including age, gender, ethnicity, genetic factors (predisposition), lifestyle choices (e.g., diet, smoking, abuse of alcohol and other drugs), medications, and pre-existing medical conditions (e.g., aggravation of asthma or cardiovascular disease). Some individuals may become more responsive to one or more chemical substances following previous exposures (e.g., sensitized workers). Susceptibility to the effects of chemical substances may be altered during different periods of fetal development and throughout an individual’s reproductive lifetime. Some changes in susceptibility may also occur at different work levels (e.g., light versus heavy work) or at exercise — situations in which there is increased cardiopulmonary demand. Additionally, variations in temperature (e.g., extreme heat or cold) and relative humidity may alter an individual’s response to a toxicant. The Documentation for any given TLV® must be reviewed, keeping in mind that other factors may modify biological responses.

    Although TLVs® refer to airborne levels of chemical exposure, dermal exposures may possibly occur in the workplace (see “Skin” on page 74 of the Definitions and Notations section).

    Three categories of TLVs® are specified: time-weighted average (TWA); short-term exposure limit (STEL); and a ceiling (C). For most substances, a TWA alone or with a STEL is relevant. For some substances (e.g., irritant gases), only the TLV–C is applicable. If any of these TLV® types are exceeded, a potential hazard from that substance is presumed to exist.

    Threshold Limit Value–Time-Weighted Average (TLV–TWA)

    The TWA concentration for a conventional 8-hour workday and a 40-hour workweek, to which it is believed that nearly all workers may be repeatedly exposed, day after day, for a working lifetime without adverse effect. Although calculating the average concentration for a workweek, rather than a workday, may be appropriate in some instances, ACGIH® does not offer guidance regarding such exposures.

    Threshold Limit Value–Short-Term Exposure Limit (TLV–STEL)

    A 15-minute TWA exposure that should not be exceeded at any time during a workday, even if the 8-hour TWA is within the TLV–TWA. The TLV–STEL is the concentration to which it is believed that workers can be exposed continuously for a short period of time without suffering from 1) irritation, 2) chronic or irreversible tissue damage, 3) dose-rate-dependent toxic effects, or 4) narcosis of sufficient degree to increase the likelihood of accidental injury, impaired self-rescue, or materially reduced work efficiency. The TLV–STEL will not necessarily protect against these effects if the daily TLV–TWA is exceeded. The TLV–STEL usually supplements the TLV–TWA where there are recognized acute effects from a substance whose toxic effects are primarily of a chronic nature; however, the TLV–STEL may be a separate, independent exposure guideline. Exposures above the TLV–TWA up to the TLV–STEL should be less than 15 minutes, should occur no more than four times per day, and there should be at least 60 minutes between successive exposures in this range. An averaging period other than 15 minutes may be recommended when this is warranted by observed biological effects.

    Threshold Limit Value–Ceiling (TLV–C)

    The concentration that should not be exceeded during any part of the working exposure. If instantaneous measurements are not available, sampling should be conducted for the minimum period of time sufficient to detect exposures at or above the ceiling value. ACGIH® believes that TLVs® based on physical irritation should be considered no less binding than those based on physical impairment. There is increasing evidence that physical irritation may initiate, promote, or accelerate adverse health effects through interaction with other chemical or biologic agents or through other mechanisms.

    * Peak Exposures

    The TLV® Committee recommends consideration of a TLV–STEL if there are supporting data. For many substances with a TLV–TWA, there is no TLV–STEL. Nevertheless, short-term peak exposures above the TLV–TWA should be controlled, even where the 8-hour TLV–TWA is within recommended limits. Limiting short-term high exposures is intended to prevent rapidly occurring acute adverse health effects resulting from transient peak exposures during a work shift. Since these adverse effects may occur at some multiple of the 8-hour TWA, even if they have not yet been documented, it is prudent to limit peak exposures. Therefore, the following default short-term exposure limits apply to those TLV–TWAs that do not have a TLV–STEL:

    Transient increases in workers’ exposure levels may exceed 3 times the value of the TLV–TWA level for no more than 15 minutes at a time, on no more than 4 occasions spaced 1 hour apart during a workday, and under no circumstances should they exceed 5 times the value of the TLV–TWA level. In addition, the 8-hour TWA is not to be exceeded for an 8-hour work period.
    This guidance on limiting peak exposures above the value of the TLV–TWA is analogous to that for the TLV–STEL, and both represent 15-minute exposure limits. The consistency in approach is intended to encourage minimizing process variability and ensuring worker protection. Good design and industrial hygiene practice ensures that processes are controlled within acceptable ranges. Historically, guidance on excursion limits has been based purely on statistical considerations: if log-normally distributed, short-term exposure values for a well-controlled process have a geometric standard deviation of 2.0, then 5% of all values will exceed 3.13 times the geometric mean. Processes that display greater variability are not under good control, and efforts should be made to restore control. Higher exposure levels also increase the possibility that acute health effects may occur, which were probably not factored into the TLV–TWA if it was based on prevention of chronic effects. The maximum excursion factor of 5 also reflects this concern about undesirable health effects. Limiting excursions reduces the probability of exceeding the TLV–TWA. When initial samples indicate peak exposures beyond these recommended excursion levels, more careful assessment is needed, especially when dealing with unusual work schedules.

    The so-called “3/5 Rule”, as described above, should be considered a rule of thumb, and a pragmatic precautionary approach. It is recognized that the geometric standard deviations of some common workplace exposures may exceed 2.0. If such distributions are known, and it can be shown that workers are not at increased risk of adverse health effects, recommended excursion limits may be modified based on workplace-specific and compound-specific health effects data.  For example, consideration should be given to dose-rate effects and elimination half-times for the particular substance and for similar compounds. Special consideration should also be given to unusual work schedules and whether the excursion factors should be applied to the TLV–TWA (e.g., if concerns for acute health effects predominate) or the adjusted TWA (e.g., if the concern is with exceeding the adjusted TWA). The practicing hygienist must use judgment in applying this guidance on peak exposures. When a TLV–STEL or a TLV–C is available, this value takes precedence over the above guidance for peak exposures.

    Excursion Limits revised May 2014 and proposed on the NIC as Peak Exposures February 2015.
    Peak Exposures adopted for 2016.

    TWA and STEL versus Ceiling (C)

    A substance may have certain toxicological properties that require the use of a TLV–C rather than a TLV–TWA excursion limit or a TLV–STEL. The amount by which the TLVs® may be exceeded for short periods without injury to health depends upon a number of factors such as the nature of the contaminant, whether very high concentrations — even for short periods — produce acute poisoning, whether the effects are cumulative, the frequency with which high concentrations occur, and the duration of such periods. All factors must be taken into consideration in arriving at a decision as to whether a hazardous condition exists.

    Although the TWA concentration provides the most satisfactory, practical way of monitoring airborne agents for compliance with the TLVs®, there are certain substances for which it is inappropriate. In the latter group are substances that are predominantly fast-acting and whose TLV® is more appropriately based on this particular response. Substances with this type of response are best controlled by a TLV–C that should not be exceeded. It is implicit in these definitions that the manner of sampling to determine noncompliance with the TLVs® for each group must differ. Consequently, a single, brief sample that is applicable to a TLV–C is not appropriate to the TLV–TWA; here, a sufficient number of samples are needed to permit determination of a TWA concentration throughout a complete cycle of operation or throughout the workshift.

    Whereas the TLV–C places a definite boundary that exposure concentrations should not be permitted to exceed, the TLV–TWA requires an explicit limit to the excursions which are acceptable above the recommended TLV–TWAs.


    Special consideration should also be given to the application of the TLVs® in assessing the health hazards that may be associated with exposure to a mixture of two or more substances. A brief discussion of basic considerations involved in developing TLVs® for mixtures and methods for their development, amplified by specific examples, is given in Appendix E. 

    Deviations in Work Conditions and Work Schedules

    Application of TLVs® to Unusual Ambient Conditions

    When workers are exposed to air contaminants at temperatures and pressures substantially different than those at normal temperature and pressure (NTP) conditions (25°C and 760 torr), care should be taken in comparing sampling results to the applicable TLVs®. For aerosols, the TWA exposure concentration (calculated using sample volumes not adjusted to NTP conditions) should be compared directly to the applicable TLVs® published in the TLVs® and BEIs® book. For gases and vapors, there are a number of options for comparing air-sampling results to the TLV®, and these are discussed in detail by Stephenson and Lillquist (2001). One method that is simple in its conceptual approach is 1) to determine the exposure concentration, expressed in terms of mass per volume, at the sampling site using the sample volume not adjusted to NTP conditions, 2) if required, to convert the TLV® to mg/m3 (or other mass per volume measure) using a molar volume of 24.4 L/mole, and 3) to compare the exposure concentration to the TLV®, both in units of mass per volume.

    A number of assumptions are made when comparing sampling results obtained under unusual atmospheric conditions to the TLVs®. One such assumption is that the volume of air inspired by the worker per workday is not appreciably different under moderate conditions of temperature and pressure as compared to NTP (Stephenson and Lillquist, 2001). An additional assumption for gases and vapors is that absorbed dose is correlated to the partial pressure of the inhaled compound. Sampling results obtained under unusual conditions cannot easily be compared to the published TLVs®, and extreme care should be exercised if workers are exposed to very high or low ambient pressures.

    Unusual Work Schedules

    Application of TLVs® to work schedules markedly different from the conventional 8-hour day, 40-hour workweek requires particular judgment to provide protection for these workers equal to that provided to workers on conventional work shifts. Short workweeks can allow workers to have more than one job, perhaps with similar exposures, and may result in overexposure, even if neither job by itself entails overexposure. 

    Numerous mathematical models to adjust for unusual work schedules have been described. In terms of toxicologic principles, their general objective is to identify a dose that ensures that the daily peak body burden or weekly peak body burden does not exceed that which occurs during a normal 8-hour/day, 5-day/week shift. A comprehensive review of the approaches to adjusting occupational exposure limits for unusual work schedules is provided in Patty’s Industrial Hygiene (Paustenbach, 2000). Other selected readings on this topic include Lapare et al. (2003), Brodeur et al. (2001), Caldwell et al. (2001), Eide (2000), Verma (2000), Roach (1978), and Hickey and Reist (1977).

    Another model that addresses unusual work schedules is the Brief and Scala model (1986), which is explained in detail in Patty’s Industrial Hygiene (Paustenbach, 2000). This model reduces the TLV® proportionately for both increased exposure time and reduced recovery (i.e., non-exposure) time, and is generally intended to apply to work schedules longer than 8 hours/day or 40 hours/week. The model should not be used to justify very high exposures as “allowable” where the exposure periods are short (e.g., exposure to 8 times the TLV–TWA for 1 hour and zero exposure during the remainder of the shift). In this respect, the general limitations on TLV–TWA excursions and TLV–STELs should be applied to avoid inappropriate use of the model with very short exposure periods or shifts.

    The Brief and Scala model is easier to use than some of the more complex models based on pharmacokinetic actions. The application of such models usually requires knowledge of the biological half-life of each substance, and some models require additional data. Another model developed by the University of Montreal and the Institute de Recherche en Sante et en Securite du Travail (IRSST) uses the Haber method to calculate adjusted exposure limits (Brodeur et al., 2001).  This method generates values close to those obtained from physiologically based pharmacokinetic (PBPK) models. 

    Because adjusted TLVs® do not have the benefit of historical use and long-time observation, medical supervision during initial use of adjusted TLVs® is advised. Unnecessary exposure of workers should be avoided, even if a model shows such exposures to be “allowable.” Mathematical models should not be used to justify higher-than-necessary exposures.

    TLV® Units

    TLVs® are expressed in ppm or mg/m3. An inhaled chemical substance may exist as a gas, vapor, or aerosol. 

    • A gas is a chemical substance whose molecules are moving freely within a space in which they are confined (e.g., cylinder/tank) at normal temperature and pressure (NTP). Gases assume no shape or volume. 
    • A vapor is the gaseous phase of a chemical substance that exists as a liquid or a solid at NTP. The amount of vapor given off by a chemical substance is expressed as the vapor pressure and is a function of temperature and pressure. 
    • An aerosol is a suspension of solid particles or liquid droplets in a gaseous medium. Other terms used to describe an aerosol include dust, mist, fume, fog, fiber, smoke, and smog. Aerosols may be characterized by their aerodynamic behavior and the site(s) of deposition in the human respiratory tract.

    TLVs® for aerosols are usually established in terms of mass of the chemical substance in air by volume. These TLVs® are expressed in mg/m3.

    TLVs® for gases and vapors are established in terms of parts of vapor or gas per million parts of contaminated air by volume (ppm), but may also be expressed in mg/m3. For convenience to the user, these TLVs® also reference molecular weights. Where 24.45 = molar volume of air in liters at NTP conditions (25°C and 760 torr), the conversion equations for gases and vapors [ppm ↔ mg/m3] are as follows:

    TLV in ppm = (TLV in mg/m3) (24.45)

    (gram molecular weight of substance)


    TLV in mg/m3 = (TLV in ppm) (gram molecular weight of substance)


    When converting values expressed as an element (e.g., as Fe, as Ni), the molecular weight of the element should be used, not that of the entire compound.

    In making conversions for substances with variable molecular weights, appropriate molecular weights should be estimated or assumed (see the TLV® Documentation).

    User Information. Each TLV® is supported by a comprehensive Documentation. It is imperative to consult the latest Documentation when applying the TLV®.

    Additional copies of the TLVs® and BEIs® book and the multi-volume Documentation of the Threshold Limit Values and Biological Exposure Indices, upon which this book is based, are available from ACGIH®. Documentation of individual TLVs® is also available. Consult the ACGIH® website ( for additional information and availability concerning these publications.

    ACGIH® disclaims liability with respect to the use of TLVs®.

    References and Selected Readings

    1. Brief RS; Scala RA: Occupational health aspects of unusual work schedules: a review of Exxon's experiences. Am Ind Hyg Assoc J 47(4):199-202 (1986).
    2. Brodeur J; Vyskocil A; Tardif R; et al.: Adjustment of permissible exposure values to unusual work schedules. Am Ind Hyg Assoc J 62:584-594 (2001).
    3. Buringh E; Lanting R: Exposure variability in the workplace: its implications for the assessment of compliance. Am Ind Hyg Assoc J 52:6-13 (1991).
    4. Caldwell DJ; Armstrong TW; Barone NJ; et al.: Lessons learned while compiling a quantitative exposure database from the published literature. Appl Occup Environ Hyg 16(2):174-177 (2001).
    5. Eide I: The application of 8-hour occupational exposure limits to non-standard work schedules offshore. Ann Occup Hyg 34(1):13-17 (1990).
    6. Hickey JL; Reist PC: Application of occupational exposure limits to unusual work schedules. Am Ind Hyg Assoc J 38(11):613-621 (1977).
    7. Lapare S; Brodeur J; Tardif R: Contribution of toxicokinetic modeling to the adjustment of exposure limits to unusual work schedules. Am Ind Hyg Assoc J 64(1):17-23 (2003).
    8. Leidel NA; Busch KA; Crouse WE: Exposure measurement action level and occupational environmental variability. DHEW (NIOSH) Pub. No. 76-131; NTIS Pub. No. PB- 267-509. U.S. National Technical Information Service, Springfield, VA (December 1975).
    9. Paustenbach DJ: Pharmacokinetics and Unusual Work Schedules. In: Patty's Industrial Hygiene, 5th ed., Vol. 3, Part VI, Law, Regulation, and Management, Chap. 40, pp. 1787-1901. RL Harris, Ed. John Wiley & Sons, Inc., New York (2000).
    10. Roach SA: Threshold limit values for extraordinary work schedules. Am Ind Hyg Assoc J 39(4):345-348 (1978).
    11. Stephenson DJ; Lillquist DR: The effects of temperature and pressure on airborne exposure concentrations when performing compliance evaluations using ACGIH TLVs and OSHA PELs. Appl Occup Environ Hyg 16(4):482-486 (2001).
    12. Verma DK: Adjustment of occupational exposure limits for unusual work schedules. Am Ind Hyg Assoc J 61(3):367-374 (2000).