1946 TLV

taken by Dr. Goldman's Committee, but rather to present the need and suggest that the Conference consider the question of setting up these procedures on the same basis as Dr. Goldman is following with the analytical methods.

DR. GOLDMAN: Of course, the subject has been discussed in our special seminar, and I think it was indicated there that if the Conference was amenable, the Committee would undertake that work also.

CHAIRMAN BREHM: Any other discussion? The chair will entertain a motion for the acceptance of the report of the Committee on Standard Methods.

Mr. FLUCK: I so move.

.... The motion was seconded by Mr. Wilson, put to a vote, and carried . . .

CHAIRMAN BREHM: The motion is carried. Thank

you, Dr. Goldman.

The last committee report we have this morning is that of the Committee on Threshold Limits by Dr. W. G. Fredrick, chairman of that Committee. Dr. Fredrick.

Report of the Sub Committee on Threshold Limits

R. FREDRICK: Considerable difficulty attends the fixing of satisfactory values for maximal allowable concentrations of chemicals in respirable atmospheres because of the lack of sufficient toxicological data and the lack of a uniform definition of the maximal allowable concentration concept. One concept is that the M.A.C. value should represent as accurately as possible that concentration at which a worker exposed for a sufficient period of time will just escape physiological or organic injury and occupational disease. A second concept is that the M.A.C. should represent some fraction of that concentration which will injure the worker in order to allow a margin of safety in the design of protective equipment and guard against possible synergistic effects in the case of multiple exposures. A third concept is that the M.A.C. should perform the functions of the former concepts and in addition provide a work environment free of objectionable but non-injurious concentrations of smokes, dusts, irritants and odors. Obviously all of these concepts cannot be fulfilled with the establishment of a single value. M.A.C. values in use at the present time represent examples of all of these concepts.

The committee feels that the establishment of dual lists or a single definition of the M.A.C. is not possible

at the present time.

An extensive list of M.A.C. values is presented to the conference for use during 1946, with the definite understanding that it be subject to annual revision. Values have been compiled from the list reported by this sub-committee at the 5th annual meeting of the N.C.G.I.H. in 1942, from the list published by Warren Cook in Industrial Medicine, vol. 14, p. 936, 1945, and from published values of the Z-37 committee of the American Standards Association.

It will be noted that many of these values have been in general use by members of the conference for several years.

Maximum Allowable Concentrations of Air Contaminants for 1946

(These values are subject to annual revision)

Data for these values have been obtained primarily from the report of this Committee in 1942, the compilation by Warren Cook, Industrial Medicine, Vol. 14, p. 936, 1945 and the values established by the American Standards Association Committee.

Group I. Gases and Vapors		- 5
Substance	¥ 8	M.A.C. (ppm)
Acetaldehyde		200
Acetic acid		10
Acetone		500
Acrolein		0.5
Acrylonitrile		20
Ammonia		100
Amyl acetate		200
iso-Amyl alcohol		100
Aniline		5
Arsine		1
Arsine		100
Benzene (Benzol)		1
Bromine		E000
1, 3-Butadiene		
n-Butanol	• • • • • • • • • • • • •	
2, Butanone	• • • • • • • • • • • • •	200
n, Butyl acetate	• • • • • • • • • • • • •	200
Butyl cellosolve		200
Carbon dioxide		5000
Carbon disulfide		20
Carbon monoxide		100
Carbon tetrachloride		50
Cellosolve		200
Cellosolve acetate		100
Chlorine		5
2-Chlorobutadiene		25
Chloroform		100
1-Chloro-1-nitropropane		20
Cyclo hexane		400
Cyclo hexanol		100
Cyclo hexanone		100
Cyclo hexanone		400
o-Dichlorobenzene		75
Dichloro difluoro methane.		10,000
1, 1-Dichloro ethane		100
1, 2-Dichloro ethane	•••••	100
1. 2-Dichloro ethylene		200
Di chloro ethyl ether		15
Di chloro methane		500
Di chloro methane Di chloromonofluromethane		5000
Di chioromononurometnane		
1, 1-Dichloro-1-nitro ethane		10 000
Dichlorotetrafluoro ethane		Б
Dimethylaniline		1
Dimethylsulfate		EAA
Dioxane		400
Ethyl acetate	• • • • • • • • • • • • • • • • • • • •	1000
Ethyl alcohol		
Ethyl benzene		200
Ethyl bromide		400
Ethyl chloride		5000
Ethylene chlorhydrin		10
Ethylene dichloride-see 1,	2-Dichloroetha	ne
Ethylene oxide		
Ethyl ether		400
Ethyl formate	<i></i>	200
Ethyl silicate		100
Freen—see dichloro difluro	methane	
Formaldehyde		10
Gasolene		500
Hantena		500

Heptane

		= .00 (0)
	Hexane	Sulphuric acid 0.5
	Hydrogen chloride 10	T-11
	Hydrogen cyanide	Tenurum 0.01
v		Tetryl 1.5
	Hydrogen nuonde	Trichloronaphthalene 5
	Hydrogen selenide	1.0
	Hydrogen sulfide 20	Zinc oxide fume 15
	Isophorone 25	- F
	Mesityl oxide 50	Group III. Mineral Dusts M.P.P.C.F.*
	Methanol 200	Alundum 50
	Methyl acetate 100	Asbestos 5
	Methyl bromide 20	Carborundum 50
	Methyl butanone 200	Portland cement 50
	Methyl cellosolve	Mica (below 5% free silica) 50
	Methyl cellosolve acetate	Nuisance (no free silica)
-7	Methyl chloride 200	C111 TT 1 4 1 TANK A THE L
	Methylcyclohexane	6771 36 11 4 man A man A
2	Methyl cyclo hexanol	Silica—Medium (5-50% free SiO ₂)
	Mathyl sysle hexanon	Silica—Low (below 5%)
	Methyl cyclo hexanone	Slate—(below 5% free SiO ₂)
	Methyl ethyl ketone	Soapstone (below 5% free SiO ₂) 50
	Methyl formate	Tale 20
7.	Methyl iso-butyl ketone	Total dust (below 5% free SiO ₂) 50
	Mono chloro benzene	Group IV. Radiations
_	Mono fluro trichloro methane	Material or Radiation Radiant Energy
٠,	Mononitro toluene	Radon or thoron gas 10.0 Curies/M ³
	Naphtha (coal tar)	
	Naphtha (petroleum) 500	till dividing por a mit day
_	Nitro benzene 5	CHAIRMAN BREHM: Thank you, Dr. Fredrick. Is
•	Nitro ethane 200	there any comment? If not, the chair will entertain
	Nitrogen oxides (other than nitrous oxide) 25	a motion regarding that report.
	Nitroglycerine 0.5	
	Nitromethane 200	It was moved and seconded that the report be
	Octane 500	accepted. The motion was put to a vote and carried
	Ozone 1	CHAIRMAN BREHM: The motion is carried. Thank
	Pentane	you, Dr. Fredrick.
	Pentanone (methyl propanone)	Mr. Brown: Mr. Chairman, in order to provide now
	Perchloroethylene—see tetrachloroethylene	for the consideration of the report of the Committee
	Phospene 1	on Industrial Hygiene Codes, I move that that report
	Phosphine 1	now be taken from the table for consideration. The
	Phosphorus trichloride 0.5	report was tabled pending presentation of the report
	iso-Propanol	of the Committee on Threshold Limits.
_	Propýl acetate	Seconded by Mr. Wilson
	iso-Propyl ether 500	CHAIRMAN BREHM: Is there any discussion?
	Stibine 10	Dr. Greenburg: I wonder if the limits set forth by
	Stoddard solvent 500	The Gamerian C. I wonder it the limits set forth by
	Styrene monomer 400	the Committee on Codes were transmitted to that
	Sulphur chloride 1	Committee from the Committee on Threshold Limits?
Ü	Sulphur dioxide 10	Dr. Fredrick: No, they were not. These committees
	1, 1, 2, 2,-Tetra chloroethane	were not in communication. I regret there seems to
	Tetra chloro ethylene	be some overlapping in the fields of activity.
	Toluene	
	Toluidine 5	MR. BLOOMFIELD: Mr. Chairman, I would like to
	Trichloroethylene 200	make a suggestion for the sake of saving time and
	Turpentine	expediting the meeting, since we want to go into Exec-
2	Vinyl chloride	utive Session soon to transact important business. I
	Xylene	suggest that the Threshold Limits and Industrial Hy-
	ZUU	giene Code be omitted and we consider the report
		without those limits. Do you think that would be agree.
	Group II. Toxic Dusts, Fumes and Mists Mg/M	·
	Barium peroxide (as Ba) 0.5	able to Mr. Buxell and your Committee? There is an
	Cadmium 0.1	overlapping and I am not sure that both report limits
	Chloro di phenyl	are in agreement. That is my suggestion.
	Chromic acid and chromates (as Cr.O.) 0.1	Mr. Brown: I personally agree, Mr. Bloomfield, but
Ť	Dinitro toluene	in order to consider that, I think the report ought to
	Fluorides (as F)	be brought back to the Conference. It can't actually
	Iodine 0.1	be considered until it is before the Conference. At that
	Iron oxide fume	time that point should be taken up.
	Lead	Chambrant bulling. The motion to bring on the babie
	Magnesium oxide fume	is now before the meeting.
	Manganese	
	Mercury 0.1	*Million particles per cubic foot of air, standard light field
	Pentachloronaphthalene 0.5	- count.

... The motion was put to a vote, and carried ... Chairman Brehm: The motion is carried.

MR. BLOOMFIELD: I would now like to make the suggestion which I made before we voted.

CHAIRMAN BREHM: All right. Does anyone have any other discussion?

MR. BROWN: May I speak on that point, Mr. Chairman? As a member of the Conference, and having nothing to do with this report, I have felt the need for such a code as is contemplated by the Conference. I would like to see the various elements which go into that report adopted by the Conference.

The individual units for the codes will probably be of great help to us individually by having them adopted by the Conference with the thought in mind that in the future they will all be combined in the form of a unified code.

As far as the report is concerned, various individuals have expressed a desire for a code at the earliest possible opportunity. This fact was kept in mind by the Committee in considering the material which it reported. It has in mind very definitely continuing the work which it is doing in an effort to arrive at a code at the earliest possible opportunity.

It would be of considerable help to the Committee in its deliberations to have expressions from the membership as to what units should be included in the code.

If this report isn't accepted by the Conference, as far as I am personally concerned, an expression as to the desires of the members as to units for such a code would prove of value.

If the Conference should desire to ask the Committee to reconsider its suggestion as to maximum allowable concentrations in the light of the report of the Committee on Threshold Limits, I think the Committee should do so.

CHAIRMAN BREHM: The report of the Committee on Threshold Limits has been approved by the Conference, which brings before us now the question of approving the report of the Committee on Industrial Hygiene Codes. Is that correct, Mr. Secretary-Treasurer?

MR. BLOOMFIELD: That is right. It ought to be disposed of one way or the other.

CHAIRMAN BREHM: The chair will entertain a motion to accept or reject at this time that report.

MR. MORSE: I make a motion we accept the report of the Committee on Industrial Hygiene Codes, deleting the section on maximum allowable concentrations pending the establishment by that Committee of allowable toxic limits.

.. Seconded by Mr. Bloomfield . .

DR. GRAY: By adopting the report of the Committee on concentrations, have we adopted the minimum concentrations they suggested? If we have, we could adopt the other code by substituting for their toxic doses one that the Committee on Threshold Limits endorses. Do I make myself clear?

MR. BLOOMFIELD: Yes, you do, Dr. Gray, but I don't see any reason for two committees coming out with two sets of limits, even if they are consistent within themselves.

DR. GREENBURG: As a matter of fact, Mr. Chairman, the provision of a list of maximum allowable concen-

trations by the Committee on Codes is not providing the society with a code. It is just providing the society with a list of maximum allowable concentrations, and a code is something quite different from that.

It seems to me that if we desire maximum allowable limits, we get those from the existing committee set

up for that purpose.

MR. BLOOMFIELD: As Mr. Brown told you, we are now working on a code which will be submitted to the Committee on Codes. Our Division has already prepared a rough draft of a very extensive code and not just allowable limits.

CHAIRMAN BREHM: The motion has been made and seconded to the effect that the Committee report on Industrial Hygiene Codes be adopted with the exception that its recommendation on maximum allowable limits be deleted—pending the submission of such allowable limits by the Committee on Threshold Limits.

MR. WITHERIDGE: As a member of the Committee on Codes, I wonder if the motion might be modified to state, instead of "pending" the submission of a report, that the list prepared by the Threshold Committee be "substituted" for the original list?

MR. MORSE: As another member of that Committee,

I think that is what I said, did I not?

CHAIRMAN BREHM: Well, Gentlemen, I think the motion can be brought to a vote.

... The motion was put to a vote, and carried ... CHAIRMAN BREHM: The motion is carried. That disposes of our committee reports for the morning. We will now go into our second Executive Session.

... The meeting recessed at twelve o'clock ...